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The problem of f low past a nonuniformly heated hydrosol spheroid-shaped particle is solved. An analytical 

expression is obtained for the hydrodynamic force acting on the particle.. 

The motion of heated particles in viscous liquid and gas media was considered in a number of works [ 1-5 ]. 

The term heated is understood to refer to a particle the mean temperature of the surface of which considerably 

exceeds in value the temperature of the environment. The surface of the particle is heated due to the presence of 

internal heat sources whose appearance can be attributed, for example, to the occurrence of a chemical reaction 

proceeding in its volume, to the process of the radioactive decay of the substance of the particle, etc. The resulting 

rise in the temperature of the particle surface can exert a substantial effect on the thermophysical characteristics 
of the environment and thereby considerably affect the distribution velocity and pressure fields in the vicinity of 

the particle. 
However, up to now the motion of heated particles in viscous gas and liquid media was considered only for 

particles of spherical shape [1-5 ]. Many particles that are met in industrial equipment and in nature have a shape 

of the surface differing from a spherical one, e.g., spheroidal. In the present work, an analytical expression has 

been obtained in the Stokes approximation for a hydrodynamic force that acts on a spheroidal particle of density 

qp heated by internal heat sources. 

We will consider the motion of a nonuniformly heated hydrosol particle with the shape of an oblate 

spheroid, at small Reynolds and Peclet numbers along the symmetry axis of the spheroid under the action of a 

certain force (gravitational, magnetic, electrophoretic, etc.) If we change to the coordinate system connected with 

the particle, then the problem is reduced in essence to the problem of flow of a plane-parallel stream of liquid with 

velocity U~ (U~ II OZ) past a nonuniformly heated stationary hydrosol particle having the form of an oblate 

(prolate) spheroid. 
Of all the parameters of the transfer of liquid, only the coefficient of dynamic viscosity depends strongly 

on temperature [6 ]. In view of a weak dependence of the density and thermal conductivity of the substance of the 

particle and carrier medium on temperature, we will Consider them to be constant. To take account of the 

temperature dependence of viscosity we shall avail ourselves of the expression [3, 6 ] 

The description of the flow past a spheroid is made in a spheroidal coordinate system (e, t l, f,) with the 
origin fixed at the center of a hydrosol particle. They are connected with the Cartesian coordinates by the following 

relations [7 1 

x - -  c s i n h e s i n r / c o s ~ o ,  y = c s i n h e s i n r / s i n ~ o ,  z =  c c o s h e c o s t / ,  (2) 
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x = c c o s h e s i n r / c o s 9 9 ,  y = c c o s h e s i n r / s i n ~ o ,  z = c s i n h e c o s r / ,  (3) 

where c -- ~ -- a 2 in the case of a prolate  spheroid (a < b, formula (2)) and c = vr~a 2 - b 2 in the case of an oblate 

spheroid (a > b, formula (3)); a and  b are the semiaxes of a spheroid. Moreover, the posit ion of the Car tes ian  

coordinate sys tem is fixed relative to the particle so that the z axis could coincide with the  symmet ry  axis of the 

spheroid. T h e  thermal  conductivity coefficient of the spheroid ;tp in magnitude is much in excess of the thermal  

conductivity coefficient of the sur rounding  liquid ;tliq" 

At small Reynolds  and Peclet  numbers  in a quasistationary approximation the dis t r ibut ion of velocity Vliq, 

pressure Pliq,  t empera ture  Tliq, and  of Tp is described by the following system of equations [8 ] 

e l i q -  flliq l ~  + ' Vliq ' 

div (;tliqVTliq) = 0 ,  div (;tpVTp) = -- qp, (5)  

In solving the system of equations (4)-(5) we take into account the following b o u n d a r y  conditions 

0TIi q 0Tp for e = e 0 , (6) 
Vii q ----- 0 ,  Tli q = T p ,  ;tliq 0e = ; t P  de 

Vli q = U~ cos r ]e  e - U~ sin r / % ,  Tli q = T ~ ,  Pliq = P~ for e = ~ . 

On the surface of the part icle these boundary conditions (6) take account of: the  condit ion of sticking for 

velocity, the equali ty of temperatures ,  and the continuity of heat fluxes. The  coordinate  surface with an e value 

equal to e 0 corresponds  to the surface of the particle. 

To find the force that acts on a solid heated spheroidal particle, it is necessary to know the tempera ture  

fields outside and  inside of it. Integrat ing Eq. (5) with corresponding boundary condit ions,  we obtain 

tli q = 1 + )' arcctan ;t ,  (7) 

~ p  2 2 
tp = B + 7 arcctan ;t + f arcctan 2 f0 d2 - arcctan ;t f f0 d 2 ,  

;t o 2 0 
(8) 

where t = T / T o ;  2 = sinh e; ;t o = sinh eo; B = 1 - arcctan ;t07(1 - ;tliq/;tp) ; 7 ---- ts - 1 is the  dimensionless  parameter  

1 ) c2(;t 2 + x2)qpdx,  x = cos r/; t s = that charac ter izes  the heating of the  surface of the particle; .to = 2~pT~_l 

T s / T ~ ,  Ts is the  mean  spheroid-surface temperature determined from the relation 

1 
Ts = 1 + fvqpdV" (9) 
Too 4Jrc21iqToo 

Integration of (9) extends over the ent ire  volume of the particle. 

From formula  (7) it is seen that  the temperature in the liquid changes with d is tance  from the surface of 

the particle. Consequent ly ,  viscosity is also a function of distance, ~tli q = flliq(;t). Since the  viscosity depends only 

on the radial  coordinate  2, a solut ion of the system of equations (4) is found by the  separat ion-of-var iables  

technique. He r e  the  components of mass velocity must be sought in the form 

UO0 
nVr. q (e, r/) -- c cosh G (e) cos r/,  

EH e 

UO0 
liv~Tq (r rl) = - cH E g (e) sin 77 
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where He = c%/cosh 2 e - sin 2 r/; G(e) and g(e) are arbitrary functions that depend on ~the radial coordinate e. 

As a result ,  expressions were found for velocity and pressure fields. Integrating the stress tensor over the 

surface of a spheroid [7 ], we obtain an expression for the hydrodynamic  resistance of a heated hydrosol  particle 

that has the shape of an oblate spheroid: 

where f/, 

F = 4mqx~U~ cf~ exp [ -  Ay arcctan 20} n z , (10) 

= G ' I / ( G I G '  2 - GzG'I); G' 1 and G' 2 are the first derivatives of the functions G1 and G2 with respect to 2; 

G 1 = ~ C(1) ; G 2 = ~. C(2) 
n=0 (n + 3) A. n+3 rt=0-- (n --t- I) ~1. n+l 3) 2 ( n + 3 )  ln--2 - 1 ; 

n z is the unit  vector in the direction of the z axis; 2 = b /c .  

The functions G1, G2, G' 1 , and G' x, which enter into the expression for the force (10), are calculated for ;t 

--2 0. The values of the coefficients C 0)  and  C (2) are determined from the recurrent relations: 

c(nl)_ 1 {~. I-'n- 2 r~(l ) [(n-~)/2]( n ( n + 5 )  ( 5 n +  13) + 12 - 1) k x  
k=0 

( n - 2 k +  1 ) ( n - 2 k + 2 )  C(1) 
x (2k + 1) (2k + 3) (2k + 5) n - 2 k - 2  - -  

[ ( n - ~ / 2 ]  (4k + 8) (n - 2k) + (2k + 3) (2k + 5) C O) 
- 12 ( -  1)k (2k + 3) (2k + 5) (2k + 7) n-2k-4 -- 

k=0 

[(n-~)/2l n - 2k + 1 p(l) 
- ro (n + l )  c~ + 4c(~),~-3 - 3 , . ,  ( -  l)k ( 2 s 1 6 5  ( ~  + 5) , - ,~-2~-3 - 

k=O 

l(n-57121 (k + 3)(4k + 9) ,.(1) ] l  
- 6  #~=OZ (- 1)~(2k+5)(2k+7)'n-2k-SJi '  ( l l )  

4 [(n-~/21 
1 (Sn + 3) p(2) 12 ~ X 

C(n2) = (n + 3) (n - 2) '-'n-2 + k=0 

( n - 2 k ) ( n - 2 k -  1) ,.~(2) 
x ( -  1) s< (2~-~-- ] 7 ~ - q - ~ - 2 - s  + s )  ,~n-2~-2  - 

t (n -~ /2 l  (4k + 9) (n - 2k - 2) + (2k + 3) (2k + 5) C(2) 
- 12 ( -  1)k (2k + 3) (2k + 5) (2k + 7) n-2•-4 - 

k=0 

l(n-~./21 n - 2k - 1 ,.~(2) 
A'(2) - 3 .-., ( -  1) k - 7o (n - 11 C(n2)l + -"~n-3 (2k h--3)-(2"k + 5) "n-2/~-3 - 

k=O 

] 
- 6 ( -  1)k (2k + 5) (2k + 7) n-Zt-sJ + 3 (2n + 12 ( -  1)/~ l n-4  + n-2 -- • 

k=O k =0 

l (n -~ /2~  1 C(1) 
4k + 9 C 0)  - {C0) 3 - 3 - 1)~ (2k + 3) (2k + 5) n - 2 k - 5  -i- X (2k + 3) (2k + 5) (2k + 7) n - 2 k - 6  )'0 

k=0 
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TABLE 1. Dependence of f~ on the Mean Temperature of the Surface of the Spheroid and Semiaxes Rat io a/b 

a/ b Ts, K 
293 313 331 353 

1.2 2.066 2.023 1.918 1.804 

1.4 0.978 0.649 0.467 0.373 

[n/2] an-2k } [(n-~) / 2] (2k + ~'(2k2n - 4k~ ~- (2kl + C(1)n-Zk-4 . (12) + 12 ~_~ (-- 1) ~ + 6  ~ ( -  1) k ( 1 - k )  
k=0 5) k=0 

In calculation of the  coefficients C 0)  and C(n 2) from the above recurrent  formulas it is necessary to take into 

account that C(01) 1 C (2) 1, C(02) 1 C~ 2) = 3 1-~ 1 = ' = = ' - -2 a l ' f l =  -- (alT0 + 4a2) '  an+l = n + 1 [70an-- (n - -  l ) an_  1] 

(n >-- 1), 7O = A~,, a o ~- 1, Cn for n < 0 are equal to zero. The integer part of the number  k/2 is denoted  by  [k] .  

Recurrent  formula (1 l) is valid for n >_ 1 and formula (12) for n _ 3. 

To obtain an express ion for the hydrodynamic resistance of a prolate spheroid, it is necessary in (10) to 

replace 2 by /2  and c by  ic (i is an imaginary unit). 

Thus, formula (10) makes it possible to evaluate the hydrodynamic  force acting on a nonuniformly heated  
spheroid-shaped particle. 

The results of calculations of the dependence of f~ on the mean tempera ture  of the surface of the spheroid 
and on the semiaxes ratio (a/b) are listed in Table 1 for Too -- 293 K and A -- 6.095 for a mercury drop suspended  
in water.  

As an example, we will consider the motion of a spheroidal particle in the gravity field. The particle, which 
is impinged by gravity in a viscous liquid, ultimately begins to move with a constant  velocity at which the gravity 

force is balanced by hydrodynamic  forces. 

The gravity force acting on the particle with account taken of the buoyancy  force is equal to 

4 2 
F = (pp - Pliq) g ~ z a  b .  (13) 

Equating (10) and  (13) ,  we obtain the velocity of the s teady incidence of the nonuniformly hea ted  spheroid-  

shaped particle: 

a2b G1G' 2 - G2G' 1 
Uoo = (/gp - -  Pliq) g 3p o~C G'I exp {Ay arcctan 20 } n z . (14) 

In the limit of ), --, 0 (small temperature differences in the vicinity of the spheroid) the formulas obta ined 

transform into well-known expressions [7 ]. 

N O T A T I O N  

~oo = ~liq(Tr T~,  temperature at a distance from the spheroid;  A, constant; Tliq, Tp, Pliq, and  Po' 
temperature and densi ty  of the liquid and particle; Vliq, mass velocity; qp(e, rl), density of the heat sources inside 
the particle as a function of the spheroidal coordinates e and r/ (0 < r/ _< ~) ; Uoo, velocity of the plane-parallel  flow 

of liquid past the spheroid  (Uoo [[ OZ); ~'liq and ;tp, thermal conductivity coefficients of the liquid and  particle; 
~ l i q '  coefficient of dynamic  viscosity; Poo and Too, nonperturbed pressure and temperature  in the liquid; g, free-fall 
acceleration. Subscripts: liq and p refer to the liquid and particle; oo denotes  values of physical quantities far from 

the particle (at infinity). 
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